Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Vis ; 21(13): 11, 2021 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-34940825

RESUMO

The purpose of this study was to evaluate fixational eye movements (FEMs) with high spatial and temporal resolution following concussion, where oculomotor symptoms and impairments are common. Concussion diagnosis was determined using current consensus guidelines. A retinal eye-tracking device, the tracking scanning laser ophthalmoscope (TSLO), was used to measure FEMs in adolescents and young adults following a concussion and in an unaffected control population. FEMs were quantified in two fixational paradigms: (1) when fixating on the center, or (2) when fixating on the corner of the TSLO imaging raster. Fixational saccade amplitude in recent concussion patients (≤ 21 days) was significantly greater, on average, in the concussion group (mean = 1.03°; SD = 0.36°) compared with the controls (mean = 0.82°; SD = 0.31°), when fixating on the center of the imaging raster (t = 2.87, df = 82, p = 0.005). These fixational saccades followed the main sequence and therefore also had greater peak velocity (t = 2.86, df = 82, p = 0.006) and peak acceleration (t = 2.80, df = 82, p = 0.006). These metrics significantly differentiated concussed from controls (AUC = 0.67-0.68, minimum p = 0.005). No group differences were seen for the drift metrics in either task or for any of the FEMs metrics in the corner-of-raster fixation task. Fixational saccade amplitudes were significantly different in the concussion group, but only when fixating on the center of the raster. This task specificity suggests that task optimization may improve differentiation and warrants further study. FEMs measured in the acute-to-subacute period of concussion recovery may provide a quick (<3 minutes), objective, sensitive, and accurate ocular dysfunction assessment. Future work should assess the impact of age, mechanism of injury, and post-concussion recovery on FEM alterations following concussion.


Assuntos
Movimentos Oculares , Fixação Ocular , Adolescente , Olho , Humanos , Movimentos Sacádicos , Visão Ocular , Adulto Jovem
2.
Biomed Opt Express ; 12(4): 2353-2372, 2021 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-33996234

RESUMO

Retinal image-based eye motion measurement from scanned ophthalmic imaging systems, such as scanning laser ophthalmoscopy, has allowed for precise real-time eye tracking at sub-micron resolution. However, the constraints of real-time tracking result in a high error tolerance that is detrimental for some eye motion measurement and imaging applications. We show here that eye motion can be extracted from image sequences when these constraints are lifted, and all data is available at the time of registration. Our approach identifies and discards distorted frames, detects coarse motion to generate a synthetic reference frame and then uses it for fine scale motion tracking with improved sensitivity over a larger area. We demonstrate its application here to tracking scanning laser ophthalmoscopy (TSLO) and adaptive optics scanning light ophthalmoscopy (AOSLO), and show that it can successfully capture most of the eye motion across each image sequence, leaving only between 0.1-3.4% of non-blink frames untracked, while simultaneously minimizing image distortions induced from eye motion. These improvements will facilitate precise measurement of fixational eye movements (FEMs) in TSLO and longitudinal tracking of individual cells in AOSLO.

3.
Invest Ophthalmol Vis Sci ; 59(15): 5705-5716, 2018 12 03.
Artigo em Inglês | MEDLINE | ID: mdl-30513531

RESUMO

Purpose: To characterize in vivo morphometry and multispectral autofluorescence of the retinal pigment epithelial (RPE) cell mosaic and its relationship to cone cell topography across the macula. Methods: RPE cell morphometrics were computed in regularly spaced regions of interest (ROIs) from contiguous short-wavelength autofluorescence (SWAF) and photoreceptor reflectance images collected across the macula in one eye of 10 normal participants (23-65 years) by using adaptive optics scanning light ophthalmoscopy (AOSLO). Infrared autofluorescence (IRAF) images of the RPE were collected with AOSLO in seven normal participants (22-65 years), with participant overlap, and compared to SWAF quantitatively and qualitatively. Results: RPE cell statistics could be analyzed in 84% of SWAF ROIs. RPE cell density consistently decreased with eccentricity from the fovea (participant mean ± SD: 6026 ± 1590 cells/mm2 at fovea; 4552 ± 1370 cells/mm2 and 3757 ± 1290 cells/mm2 at 3.5 mm temporally and nasally, respectively). Mean cone-to-RPE cell ratio decreased rapidly from 16.6 at the foveal center to <5 by 1 mm. IRAF revealed cells in six of seven participants, in agreement with SWAF RPE cell size and location. Differences in cell fluorescent structure, contrast, and visibility beneath vasculature were observed between modalities. Conclusions: Improvements in AOSLO autofluorescence imaging permit efficient visualization of RPE cells with safe light exposures, allowing individual characterization of RPE cell morphometry that is variable between participants. The normative dataset and analysis of RPE cell IRAF and SWAF herein are essential for understanding microscopic characteristics of cell fluorescence and may assist in interpreting disease progression in RPE cells.


Assuntos
Células Fotorreceptoras Retinianas Cones/citologia , Epitélio Pigmentado da Retina/citologia , Adulto , Idoso , Contagem de Células , Feminino , Voluntários Saudáveis , Humanos , Masculino , Pessoa de Meia-Idade , Mosaicismo , Oftalmoscopia/métodos , Imagem Óptica , Óptica e Fotônica , Epitélio Pigmentado da Retina/diagnóstico por imagem , Tomografia de Coerência Óptica , Adulto Jovem
4.
EBioMedicine ; 26: 47-59, 2017 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-29208469

RESUMO

Central nervous system (CNS) neurons fail to regrow injured axons, often resulting in permanently lost neurologic function. Tacrolimus is an FDA-approved immunosuppressive drug with known neuroprotective and neuroregenerative properties in the CNS. However, tacrolimus is typically administered systemically and blood levels required to effectively treat CNS injuries can lead to lethal, off-target organ toxicity. Thus, delivering tacrolimus locally to CNS tissues may provide therapeutic control over tacrolimus levels in CNS tissues while minimizing off-target toxicity. Herein we show an electrospun poly(ester urethane) urea and tacrolimus elastomeric matrix (PEUU-Tac) can deliver tacrolimus trans-durally to CNS tissues. In an acute CNS ischemia model in rat, the optic nerve (ON) was clamped for 10s and then PEUU-Tac was used as an ON wrap and sutured around the injury site. Tacrolimus was detected in PEUU-Tac wrapped ONs at 24h and 14days, without significant increases in tacrolimus blood levels. Similar to systemically administered tacrolimus, PEUU-Tac locally decreased glial fibrillary acidic protein (GFAP) at the injury site and increased growth associated protein-43 (GAP-43) expression in ischemic ONs from the globe to the chiasm, consistent with decreased astrogliosis and increased retinal ganglion cell (RGC) axon growth signaling pathways. These initial results suggest PEUU-Tac is a biocompatible elastic matrix that delivers bioactive tacrolimus trans-durally to CNS tissues without significantly increasing tacrolimus blood levels and off-target toxicity.


Assuntos
Sistema Nervoso Central/efeitos dos fármacos , Traumatismos do Nervo Óptico/tratamento farmacológico , Células Ganglionares da Retina/efeitos dos fármacos , Tacrolimo/administração & dosagem , Animais , Sistema Nervoso Central/fisiopatologia , Sistemas de Liberação de Medicamentos , Elastômeros/administração & dosagem , Elastômeros/química , Humanos , Traumatismos do Nervo Óptico/patologia , Poliésteres/administração & dosagem , Poliésteres/química , Ratos , Células Ganglionares da Retina/patologia , Tacrolimo/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...